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Abstract

The dynamics of a periodically forced single-degree-of-freedom linear system with a proportional
feedback control subjected to a saturation constraint is investigated in detail. Emphasis is placed on the
determination of a double-entering saturation region per cycle periodic motion. Symmetric period-one
solutions are derived analytically and their stability characteristics are determined. Other kinds of solutions
such as asymmetric, subharmonic and chaotic solutions as well as multiple-crossing saturation region per
cycle periodic solutions, found through numerical simulations, are also presented.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

An important aspect of the control system design is to choose the size of the actuator, such as
the power required and the saturation level of the device. Generally, higher saturation levels
require bigger and more costly actuators. On the other hand, the addition of a saturation element
following a controller with an attempt to guarantee equipment reliability is a useful practice in
almost all controlled systems. A key technical issue that needs to be addressed in these systems is
the effect of the saturation constraints on the control systems’ performance [1,2].
Saturation constraints may also occur in some typical electromechanical systems, for example,

in an active magnetic bearing system. A typical magnetic bearing system is essentially composed
of four components; sensors, controllers, power amplifiers, and electromagnetic actuators [3]. In
this practical system, saturation phenomena could happen in several ways. The saturation of the
magnetic material is achieved when all of the domains in the ferromagnetic core material are
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completely aligned with an external field. Further increases in the applied field produce only an
equal gain in the centre field. This fixed value gain is determined not by the applied field but by the
strengths of the internal dipoles. On the other hand, the saturation of the power amplifier can be
caused by technical limitations of the amplifier. In addition, the limitation of the control current
within a certain proper range is needed to prevent the hardware from being damaged. An
occurrence of the saturation may lead to a poor dynamical behaviour of the system. For a
controlled system with a saturation constraint, an in-depth knowledge of the system response can
be of prime importance to design and control the system and to avoid unacceptable levels of
vibration and noise.
In the context of control engineering, a large number of stable dynamical processes and

engineering problems can be modelled via a standard linear second order system. The control of
such a system has been completely solved [1,2]. However, the steady state response and its stability
of the overall controlled system, in which a periodic excitation and a saturation constraint are
presented, have not yet been studied in detail and need to be investigated. Due to the presence of
saturation constraints, the equations governing the motions of such systems are inherently non-
linear with piecewise linear characteristics. Although the dynamics of piecewise linear systems in
connection with mostly impact oscillators has been the subject of many papers [e.g. Refs. [4–9]],
the dynamics of the specific system considered here has not yet been investigated, to the author’s
knowledge.
The objective of the present study is to determine analytically the periodic motions of a

harmonically excited single-degree-of-freedom (s.d.o.f.) linear system subjected to a saturation
constraint, which occurs in the feedback control loop. In Section 2, the equations of motion are
derived for a periodically forced s.d.o.f. piecewise linear system. A symmetric period-one solution
is considered in Section 3, and its stability characteristic is examined in Section 4. Other kinds of
solutions, such as asymmetric, subharmonic periodic and chaotic motions, are briefly given in
Section 5. Finally, conclusions are presented in Section 6.

2. Equations of motion

The mathematical model to be considered in the present paper is generalized from a specific
example of engineering systems, i.e., a Jeffcott rotor–magnetic bearing system. However, the
equations of motion can also be used to model mathematically a class of simple control systems
subjected to various saturation constraints in the feedback control signal. Consider a Jeffcott
rotor–magnetic bearing system subjected to an unbalanced excitation. The equations of motion
for the shaft motion in the horizontal direction can be described as [10]

mx00 þ cx0 þ kx ¼ Fmb þ meO2 cosOT ; ð1Þ

where m is the mass of the rotor, c is the damping coefficient, k is the shaft stiffness, e is the mass
eccentricity, Fmb represents the magnetic force, O is the rotational speed, and the prime denotes
differentiation with respect to the physical time T :
When the saturation constraints are taken into account, the magnetic force generated by the

magnetic bearing cannot increase to infinity but is constrained within a certain range. The
maximum upper force is reached when any saturation phenomenon occurs. The magnetic force
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with the saturation constraints can be written as

Fmb ¼
1

2
ðjF ðx; iÞ þ Fsj � jF ðx; iÞ � FsjÞ: ð2Þ

where Fs denotes the upper limit force, F ðx; iÞ represents the magnetic force under a normal
operating situation and is non-linear in nature. As a matter of convenience, only the linear
approximate form is used to simplify the force according to the expression given in Refs. [3,11],

Fðx; iÞ ¼ kii � kxx; ð3Þ

where i denotes the control current, ki is the actuator gain and kx is the open loop stiffness. For
simplicity, the feedback control system is assumed to generate a current that is proportional to the
rotor displacement, i.e., a P-controller, with the form i ¼ px; where p represents the proportional
gain. Without loss of generality, it is also assumed that the saturation constraint is indicated by
simply restricting the displacement x; and the upper level of the saturation is presented by xs: In
terms of x and xs; the upper saturation value of the magnetic force can be expressed as Fs ¼ kcxs;
where kc ¼ kip � kx: The overall magnetic force is of the form shown in Fig. 1.
Substituting Eq. (2) into Eq. (1), and introducing non-dimensional variables by x ¼ xsy and

t ¼ O1T ; yields the equations of motion in the non-dimensional form

.y þ 2d ’y þ y þ o22y ¼ f cosot for jyjp1; ð4aÞ

.y þ 2d ’y þ y þ o22 sgnðyÞ ¼ f cosot for jyjX1; ð4bÞ

where O21 ¼ k=m; 2d ¼ c=mO1; o22 ¼ kc=k; o ¼ O=O1; f ¼ eo2=xs; sgnð�Þ denotes the sign
function, and the superscript dot indicates differentiation with respect to the non-dimensional
time t: For a small amplitude response, the controller and actuator operate under a normal
situation. The saturation constraint does not need to be considered. The system is entirely linear
and behaves according to the solution of Eq. (4a). This case is not considered in the present paper
as the system demonstrates only small amplitude linear harmonic motions. However, for the
amplitude of response larger than the level of saturation, the dynamical behaviour of the system is
locally governed by Eq. (4b). An overall behaviour of the system is then determined by joining
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Fig. 1. The symmetric, piecewise linear magnetic force in the presence of saturation constraints.
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Eqs. (4a) and (4b) together. The motions of the system will enter the saturation regions at least
once in one period of a periodic motion.

3. Symmetric period-one solutions

It is easy to note that system (4) is continuous and satisfies the Lipschitz condition. Therefore,
the solution of Eq. (4) exists and is unique. However, it cannot be obtained in closed form, since,
as will be seen, the times of passing through the boundaries of the saturation region cannot be
found explicitly. The results of numerical simulations on the dynamical behaviour of system (4)
suggested that the system may exhibit symmetric, asymmetric, subharmonic periodic motions, and
chaotic motions. In addition, single-, double- and multiple-crossing saturation region per cycle
periodic solutions were also found to exist in some combinations of the system parameters. In the
present work, a strong emphasis is placed on the analytical determination of the double-entering
saturation region per cycle symmetric period-one solutions. Such a typical period-one solution is
shown in Fig. 2. The response consists entirely of four distinct segments of the motion according
to four time intervals; ½t0; t1
; ½t1; t2
; ½t2; t3
 and ½t3; t4
; where t4 ¼ t0 þ 2p=o; and ti�1ði ¼ 1; 2; 3; 4Þ
denotes the time instant that the motion crosses the boundaries of the saturation regions. The
construction of the solution is based on the observation that Eq. (4) is linear in each of the regions
jyðtÞjp1 and jyðtÞjX1 respectively. Due to the symmetry of the solution being sought, only two
parts of the motion need to be considered.
Let y1ðtÞ denote the solution starting from time t0 in the region yðtÞX1; and y2ðtÞ from t1 in

jyðtÞjp1; then the general solutions can be written as

y1ðtÞ ¼ e�dðt�t0Þ½A1 cos b1ðt � t0Þ þ B1 sin b1ðt � t0Þ
 þ G1 sinot

þ H1 cosot þ Y0 for y1ðtÞX1;

y2ðtÞ ¼ e�dðt�t1Þ½A2 cos b2ðt � t1Þ þ B2 sin b2ðt � t1Þ
 þ G2 sinot

þ H2 cosot for jy2ðtÞjp1; ð5Þ
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Fig. 2. The double-entering saturation region per cycle symmetric period-one solution.
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and the corresponding velocities as

’y1ðtÞ ¼ e�dðt�t0Þ½ðb1B1 � dA1Þ cos b1ðt � t0Þ � ðb1A1 þ dB1Þ sin b1ðt � t0Þ


þ oG1 cosot � oH1 sinot for y1ðtÞX1;

’y2ðtÞ ¼ e�dðt�t1Þ½ðb2B2 � dA2Þ cos b2ðt � t1Þ � ðb2A2 þ dB2Þ sin b2ðt � t1Þ


þ oG2 cosot � oH2 sinot for jy2ðtÞjp1; ð6Þ

where b1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d2

p
; b2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o22 � d2

q
; Y0 ¼ �o22 sgnðyÞ;

G1 ¼
2dof

ð1� o2Þ2 þ ð2doÞ2
; H1 ¼

ð1� o2Þf

ð1� o2Þ2 þ ð2doÞ2
;

G2 ¼
2dof

ð1þ o22 � o2Þ2 þ ð2doÞ2
; H2 ¼

ð1þ o22 � o2Þf

ð1þ o22 � o2Þ2 þ ð2doÞ2
:

Here, it has been assumed that the steady state response starts at time instant t0 from y1ðt0Þ ¼ 1
and stays thereafter in the saturation region y1ðtÞX1 till moment t1: Since the origin of the starting
time has been set by the choice of the forcing term in Eq. (5), it is not possible to set t0 ¼ 0: At this
point it is clear that there are six unknowns of the problem at hand, that is, four constants A1; B1;
A2 and B2; and two crossing times t0 and t1: These constants can be determined by imposing an
appropriate set of initial, periodicity, continuity and symmetry conditions. These conditions can
be expressed as follows:

y1ðt0Þ ¼ 1; y1ðt1Þ ¼ 1; y2ðt1Þ ¼ 1; ’y1ðt1Þ ¼ ’y2ðt1Þ;

y2ðt2Þ ¼ �1; ’y2ðt2Þ ¼ � ’y1ðt0Þ; t2 � t0 ¼ p=o: ð7Þ

Here, the last two conditions arise from the symmetry of the double-crossing saturation region per
cycle symmetric period-one solutions being examined. The unknown constants A1; B1; A2 and B2;
as functions of the system parameters and the crossing times t0 and t1; can be determined by
substituting Eq. (5) into four displacement conditions given by Eq. (7). For the clarity of notation,
these constants are denoted as

Ai ¼ Ai0 þ Aic cosot0 þ Ais sinot0;

Bi ¼ Bi0 þ Bic cosot0 þ Bis sinot0; i ¼ 1; 2: ð8Þ

with A10 ¼ 1� Y0; A1c ¼ �H1; A1s ¼ �G1; A20 ¼ 1; A2c ¼ �G2s10 � H2c10;

A2s ¼ H2s10 � G2c10; B10 ¼ ½1� Y0 � c110ð1� Y0Þe10
=e10s110;

B1c ¼ ðe10c110H1 � s10G1 � c10H1Þ=e10s110;

B1s ¼ ðe10c110G1 � c10G1 þ s10H1Þ=e10s110;

B20 ¼ �½e10 þ ðc2c210 þ s2s210Þe0
=e0ðs2c210 � c2s210Þ;

B2c ¼ ½e10H2 � e0A2cðc2c210 þ s2s210Þ
=e0ðs2c210 � c2s210Þ;

B2s ¼ ½e10G2 � e0A2sðc2c210 þ s2s210Þ
=e0ðs2c210 � c2s210Þ;
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where

s1 ¼ sin b1
p
o
; c1 ¼ cos b1

p
o
; s2 ¼ sin b2

p
o
; c2 ¼ cos b2

p
o
;

s10 ¼ sinoðt1 � t0Þ; c10 ¼ cosoðt1 � t0Þ; s110 ¼ sin b1ðt1 � t0Þ;

c110 ¼ cos b1ðt1 � t0Þ;

s210 ¼ sin b2ðt1 � t0Þ; c210 ¼ cos b2ðt1 � t0Þ; e0 ¼ e�dp=o; e10 ¼ e�dðt1�t0Þ:

In order to obtain the solutions y1ðtÞ and y2ðtÞ; it is naturally necessary to find the crossing times
t1 and t0: Substituting expression (8) into Eq. (6) and the resulting velocities into two velocity
conditions given by Eq. (7), yields the following two transcendental equations for the time interval
ðt1 � t0Þ and time instant t0 as

D11 cosot0 þ D12 sinot0 ¼ D10;

D21 cosot0 þ D22 sinot0 ¼ D20; ð9Þ

with D11 ¼ a11B1c þ a12A1c þ a13; D12 ¼ a11B1s þ a12A1s þ a14;

D10 ¼ b2B20 � dA20 � a11B10 � a12A10;

D21 ¼ ðb2B2c � dA2cÞa21 þ ðb2A2c þ dB2cÞa22 þ a23;

D22 ¼ ðb2B2s � dA2sÞa21 þ ðb2A2s þ dB2sÞa22 þ a24;

D20 ¼ b1B10 � dA10 þ ðb2B20 � dA20Þa21 þ ðb2A20 þ dB20Þa22;

where a11 ¼ e10c110b1 � e10s110d; a12 ¼ �e10c110d� e10s110b1;

a13 ¼ oðG1 � G2Þc10 � oðH1 � H2Þs10 þ dA2c � b2B2c;

a14 ¼ oðG2 � G1Þs10 � oðH1 � H2Þc10 þ dA2s � b2B2s;

a21 ¼ e0ðc2c210 þ s2s210Þ=e10; a22 ¼ e0ðc2s210 � s2c210Þ=e10;

a23 ¼ oðG1 � G2Þ þ b1B1c � dA1c; a24 ¼ oðH2 � H1Þ þ b1B1s � dA1s:

Separating sinot0 and cosot0 in terms of the system parameters and the time interval ðt1 � t0Þ
from Eq. (9) yields

cosot0 ¼
ðD10D22 � D12D20Þ
ðD11D22 � D12D21Þ

; sinot0 ¼
ðD11D20 � D10D21Þ
ðD11D22 � D12D21Þ

: ð10Þ

Applying the trigonometric identity, sin2 ot0 þ cos2 ot0 ¼ 1; leads to a transcendental equation

ðD10D22 � D12D20Þ
2 þ ðD11D20 � D10D21Þ

2 ¼ ðD11D22 � D12D21Þ
2: ð11Þ

This equation involves only the system parameters and the unknown time interval ðt1 � t0Þ: It
seems that no analytic solutions can be found to Eq. (11). Thus numerical means have to
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be adopted to solve the equation. The value of t0 can be obtained from Eq. (10) after getting the
solutions to Eq. (11) in the range 0 to p=o; and t1 is found by a simple addition. Then the
constants A1; B1; A2 and B2 can be evaluated from Eq. (8), and hence the corresponding histories
of y1ðtÞ and y2ðtÞ can be calculated from Eq. (5). It should be noted that not all the possible
solutions to Eq. (11) for the time interval ðt1 � t0Þ are physical and acceptable ones. Only
one solution, which produces a trajectory in the saturation range (i.e., y1ðtÞX1), is the desirable
solution. In Section 4, the stability of such a symmetric periodic solution will be studied.

4. Stability of the periodic solutions

Due to the presence of stiffness discontinuities in Eq. (4), the stability characteristic of a
symmetric period-one motion cannot be examined using the usual method of the classical Floquet
theory. An alternative approach [12] is applicable to investigate the asymptotic behaviour of the
perturbations to the steady state solutions. The idea is to add small perturbations to the initial
conditions and examine what happens to the resultant perturbed solutions as the motion
progresses. The symmetry of the motion being examined ensures that its stability characteristic
can be fully determined in one half of the response.
Let z1ðtÞ and z2ðtÞ denote the corresponding perturbed solutions to y1ðtÞ and y2ðtÞ respectively.

The perturbed initial conditions for the perturbed motion of the first segment z1ðtÞ can be
written as

z1ðt0 þ Dt0Þ ¼ 1; ’z1ðt0 þ Dt0Þ ¼ v0 þ Dv0;

where the operator D indicates a small perturbation of the operand. The corresponding perturbed
solutions for the displacement and velocity can be expressed as

z1ðtÞ ¼ e�dðt�t0�Dt0Þ½P1 cos b1ðt � t0 � Dt0Þ þ Q1 sin b1ðt � t0 � Dt0Þ


þ G1 sinot þ H1 cosot þ Y0 for z1ðtÞX1;

’z1ðtÞ ¼ e�dðt�t0�Dt0Þ½ðb1Q1 � dP1Þ cos b1ðt � t0 � Dt0Þ � ðb1P1 þ dQ1Þ sin b1ðt � t0 � Dt0Þ


þ oG1 cosot � oH1 sinot for z1ðtÞX1: ð12Þ

At time instant t ¼ t1 þ Dt1; the response reaches one boundary of the saturation region and will
leave the saturation region thereafter. The perturbed response at the moment of departure is
assumed to be

z1ðt1 þ Dt1Þ ¼ 1; ’z1ðt1 þ Dt1Þ ¼ v1 þ Dv1: ð13Þ

Since the perturbations in the initial conditions are assumed to be small, it is expected that the
coefficients P1 and Q1 will assume values close to those of the unperturbed motion, A3 and B3
respectively. To the first order, they are given by

P1 ¼ A3 þ
@A3

@t0
Dt0 þ

@A3

@v0
Dv0;

Q1 ¼ B3 þ
@B3

@t0
Dt0 þ

@B3

@v0
Dv0: ð14Þ

ARTICLE IN PRESS

J.C. Ji / Journal of Sound and Vibration 271 (2004) 905–920 911



The constants A3 and B3 are determined, without unnecessary complexity, by imposing the
unperturbed initial conditions z1ðt0Þ ¼ 1 and ’z1ðt0Þ ¼ v0; which are given by

A3 ¼ 1� Y0 � G1 sinot0 � H1 cosot0;

B3 ¼ ðv0 þ dA3 � oG1 cosot0 þ oH1 sinot0Þ=b1: ð15Þ

Substituting expression (15) into Eq. (14) yields

P1 ¼ A3 þ A31Dt0; Q1 ¼ B3 þ B31Dt0 þ Dv0=b1; ð16Þ

where A31 ¼ oH1 sinot0 � oG1 cosot0;

B31 ¼ ½oðoG1 þ dH1Þ sinot0 þ oðoH1 � dG1Þ cosot0
=b1:

Substituting expressions (15) and (16) into Eq. (12) then the resultant equations into condition
(13), and keeping only the first order terms gives rise to

K11Dt1 þ K12Dt0 þ K13Dv0 ¼ 0;

Dv1 ¼ K21Dt1 þ K22Dt0 þ K23Dv0; ð17Þ

with K11 ¼ e10F11 � e10dðA3c110 þ B3s110Þ þ oF13;

K12 ¼ e10F12 þ e10dðA3c110 þ B3s110Þ; K13 ¼ e10s110=b1;

K21 ¼ e10L13 � e10dL10 � o2G1 sinot1 � o2H1 cosot1; K22 ¼ e10L11 þ e10dL10; K23 ¼ e10L12;

where F11 ¼ B3b1c110 � A3b1s110; F12 ¼ A3b1s110 þ A31c110 þ B31s110 � B3b1c110;

F13 ¼ G1 cosot1 � H1 sinot1; L10 ¼ ðb1B3 � dA3Þc110 � ðb1A3 þ dB3Þs110;

L11 ¼ ðb1B31 � dA31Þc110 þ ðb1B3 � dA3Þb1s110 � ðb1A31 þ dB31Þs110 þ ðb1A3 þ dB3Þb1c110;

L12 ¼ c110 � ds110=b1; L13 ¼ ðdA3 � b1B3Þb1s110 � ðb1A3 þ dB3Þb1c110:

The asymptotic behaviour of the perturbed motion for the second segment of the response from
time ðt1 þ Dt1Þ to ðt2 þ Dt2Þ can be investigated using the same procedure performed as that
for the first segment. Similarly, the solutions corresponding to the perturbed initial conditions
z2ðt1 þ Dt1Þ ¼ 1; ’z2ðt1 þ Dt1Þ ¼ v1 þ Dv1; can be written in the form

z2ðtÞ ¼ e�dðt�t1�Dt1Þ½P2 cos b2ðt � t1 � Dt1Þ þ Q2 sin b2ðt � t1 � Dt1Þ


þ G2 sinot þ H2 cosot for jz2ðtÞjp1;

’z2ðtÞ ¼ e�dðt�t1�Dt1Þ½ðb2Q2 � dP2Þ cos b2ðt � t1 � Dt1Þ � ðb2P2 þ dQ2Þ sin b2ðt � t1 � Dt1Þ


þ oG2 cosot � oH2 sinot for jz2ðtÞjp1: ð18Þ

The constants P2 and Q2 to the first order are given by

P2 ¼ A4 þ A41Dt1; Q2 ¼ B4 þ B41Dt1 þ Dv1=b2; ð19Þ

where A4 ¼ 1� G2 sinot1 � H2 cosot1; A41 ¼ oH2 sinot1 � oG2 cosot1;

B4 ¼ ðv1 þ dA2 � oG2 cosot1 þ oH2 sinot1Þ=b2;

B41 ¼ ½oðoH2 � dG2Þ cosot1 þ oðdH2 þ oG2Þ sinot1
=b2:
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The perturbed response at moment ðt2 þ Dt2Þ is assumed to be

z2ðt2 þ Dt2Þ ¼ 1; ’z2ðt2 þ Dt2Þ ¼ v2 þ Dv2: ð20Þ

Substituting Eq. (18) into condition (20) and performing some algebraic manipulations yields the
following equations retaining terms up to the first order as

M11Dt2 þ M12Dt1 þ M13Dv1 ¼ 0;

Dv2 ¼ M21Dt2 þ M22Dt1 þ M23Dv1; ð21Þ

with M11 ¼ e0F21=e10 � dðA4c201 þ B4s201Þe0=e10 þ F23o;

M12 ¼ e0F22=e10 þ dðA4c201 þ B4s201Þe0=e10; M13 ¼ e0s201=e10b2;

M21 ¼ e0L23=e10 � e0dL20=e10 þ o2G2 sinot0 þ o2H2 cosot0;

M22 ¼ e0L21=e10 þ e0dL20=e10; M23 ¼ e0L22=e10;

where F21 ¼ B4b2c201 � A4b2s201; F22 ¼ A4b2s201 þ A41c201 þ B41s201 � B4b2c201;

F23 ¼ H2 sinot0 � G2 cosot0; L20 ¼ ðb2B4 � dA4Þc201 � ðb2A4 þ dB4Þs201;

L21 ¼ ðb2B4 � dA4Þb2s201 þ ðb2B41 � dA41Þc201 � ðb2A41 þ dB41Þs201 þ ðb2A4 þ dB4Þb2c201;

L22 ¼ c201 � ds201=b2; L23 ¼ ðdA4 � b2B4Þb2s201 � ðb2A4 þ dB4Þb2c201;

c201 ¼ cos b2
p
o
þ t0 � t1

� �
; s201 ¼ sin b2

p
o
þ t0 � t1

� �
:

Eqs. (17) and (21) can be put in matrix form as follows:

Dt1

Dv1

" #
¼ R

Dt0

Dv0

" #
;

Dt2

Dv2

" #
¼ U

Dt1

Dv1

" #
; ð22Þ

where R is the ð2� 2Þ matrix with the entries r11 ¼ �K12=K11; r12 ¼ �K13=K11; r21 ¼ K22 �
K21K12=K11; r22 ¼ K23 � K21K13=K11 respectively. And U denotes the ð2� 2Þ matrix with the
elements u11¼�M12=M11; u12¼�M13=M11; u21¼M22 � M21M12=M11; u22¼M23 � M21M13=M11

respectively.
The small perturbations of the symmetric solution during the first half period are obtained by

combining the two equations given by Eq. (22) to form an equation

Dt2

Dv2

" #
¼ J

Dt0

Dv0

" #
; ð23Þ

where J represents the transition matrix for the response from moment ðt0 þ Dt0Þ to ðt2 þ Dt2Þ;
and is given by J ¼ RU: The stability of the steady state solution is determined by the eigenvalues
of this transition matrix. Denote the trace of J by TJ and the determinant of J by DJ; then two
eigenvalues of the matrix are given by

l1;2 ¼ 1
2
½TJ7ðTJ2 � 4DJÞ1=2
: ð24Þ

The symmetric period-one motion is asymptotically stable if both eigenvalues l1; l2 of matrix J
have modulus less than unity. When either of two eigenvalues has modulus greater than one the
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solution is unstable. From the preceeding discussion, it is known that all the elements of matrix J
are functions of the system parameters and the crossing times which cannot be given explicitly.
This means that it is not possible to get explicit expressions in terms of the system parameters for
the trace and determinant of matrix J: In fact, a major difficulty is in developing a simple
expression for the trace TJ: Nevertheless, by substituting the expressions of the elements of
matrices R and U and performing some algebraic manipulations, the determinants of matrices R
and U; namely DR and DU ; are eventually expressed in a simple form as

DR ¼ e210
’y1ðt0Þ
’y1ðt1Þ

; DU ¼
e20
e210

’y2ðt1Þ
’y2ðt2Þ

: ð25Þ

The determinant of matrix J is then given by the product of the traces of matrices R and U as

DJ ¼ e20
’y1ðt0Þ
’y1ðt1Þ

�
’y2ðt1Þ
’y2ðt2Þ

: ð26Þ

By imposing the continuity and periodicity conditions of the symmetric solution, i.e., ’y1ðt1Þ ¼
’y2ðt1Þ; ’y2ðt2Þ ¼ � ’y1ðt0Þ; Eq. (26) is further simplified to a quite simple form

DJ ¼ �e20: ð27Þ

Therefore, if the damping coefficient d in Eq. (4) is positive, it is obvious from Eq. (27) that
�1oDJo0: This indicates that no Hopf bifurcation is possible in the symmetric motion
examined. As the system parameters are changed, the modulus of one eigenvalue may take the
value of unity, where a bifurcation occurs. One possible way for the eigenvalue to cross the unit
circle is through +1, which corresponds to a saddle-node, pitchfork or transcritical bifurcation.
The other way is through �1; which relates to a period-doubling bifurcation. The stability
boundaries l ¼ 71 can be established by solving the equation

DJ8TJ þ 1 ¼ 0: ð28Þ

It is noted that Eq. (28) involves trigonometric and exponential function terms which depend on
the crossing times t1 and t0: This implies that the stability diagrams cannot be analytically built
up. In addition, since the determination of t1 and t0 depends on the roots of transcendental
equation(11), a numerical construction of the stability diagrams will be an extremely laborious
task. The stability diagrams are not pursued in the present paper.
To validate the present analytical results, the symmetric period-one solutions determined by the

present analysis were compared with those obtained by the direct numerical integration for several
cases. The classical fourth order Runge–Kutta algorithm was employed to perform the numerical
integration to Eq. (4). It was found that the steady state solutions obtained by these two different
means were identical. As an illustrative example, consider a system with the parameters d ¼ 0:25;
o2 ¼

ffiffiffi
3

p
; f ¼ 2:5 and o ¼ 1:5: For this combination of the system parameters, only a double-

crossing symmetric motion exists under different sets of initial conditions. Two eigenvalues of
transition matrix J calculated from Eq. (24) are l1E0:5311 and l2E� 0:6608; indicating that the
steady state solution is stable. The present analysis given in Section 3 gives that t0E0:2825 and
t1E1:9923: The values of crossing times t0 and t1 given by the numerical integration are nearly
identical to those predicted by the developed analysis. A very small difference only in the fourth
decimal place, which resulted from a run-out of the calculation, was found between the values
obtained by the two different approaches. The phase portrait of the symmetric period-one
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solution found by both the numerical integration and the developed analysis is shown in Fig. 3.
The transient response of the system originating from initial conditions ðy0; ’y0Þ ¼ ð0:0; 0:1Þ; which
was obtained from the numerical integration, converges quickly to the steady state response. The
steady state motion is obviously in excellent agreement with that obtained by the developed
analysis.

5. Other kinds of solutions

The analysis presented in Sections 3 and 4 can be extendible to determine asymmetric and
subharmonic solutions, and even to determine the solutions having multiple-crossing saturation
region per cycle. However, except single-crossing saturation region asymmetric solutions, the
procedure in finding any other solutions will be exceptionally lengthy and involve many more
algebraic manipulations. In this section, alternatively, some examples of the numerical
simulations are given to illustrate other kinds of solutions.
The widely used software package MATLAB/SIMULINK was employed to simulate the

dynamical system (4). This system model can be easily built up by the built-in SIMULINK blocks.
The saturation block in the library of non-linear components was used to impose the upper and
lower bounds ð71Þ on the input signal. The fourth order Runge–Kutta procedure was chosen to be
the numerical integration method of the ODE solvers. The initial conditions for two integrator
blocks were all set to zero, unless otherwise stated. The simulation results were observed on-line
during the dynamic simulation using scope and other display blocks. The numerical simulations
were carried out under three sets of the forcing frequency oo1; 1popð1þ o22Þ

1=2; and
o > ð1þ o22Þ

1=2: Due to a lack of analytical results to guide the simulations, the choice of system
parameters and initial conditions was made arbitrarily. It was also not possible to assert the
presence or absence of a certain solution in a given set of the system parameters, unless it was
found by a fortuitous choice of initial conditions.
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Only the stable double-crossing saturation region per cycle symmetric period-one solutions
were found to exist at the excitation frequency in the region o > ð1þ o22Þ

1=2; starting from any set
of initial conditions. Besides symmetric period-one motions, a variety of asymmetric and
subharmonic motions may be observed at some values of the excitation frequency out of the
region; oo1 or 1popð1þ o22Þ

1=2: The minimum period of a subharmonic motion, which is an
integral multiple of the forcing period, indicates the order of the subharmonic motion. The
Poincar!e sections at different values of the excitation phase were used to sample the subharmonic
motions to determine the order of a motion. The subharmonic motions of order two, three, four,
five, six and seven were found to exist in some combinations of the system parameters. The
subharmonic solutions seemed to disappear and period-one solutions to appear for higher
damping levels. Some higher order subharmonic solutions were found to be sensitive to the
calculation accuracy. A subharmonic motion of order 21, as shown in Fig. 4, was found to exist at
d ¼ 0:0008; o2 ¼

ffiffiffiffiffiffi
3:2

p
; f ¼ 5:25; and o ¼ 0:96:

Taking the excitation amplitude as the bifurcation parameter, a bifurcation diagram of the
system response in the range fA½6:6; 7:8
 under d ¼ 0:025; o2 ¼

ffiffiffiffiffiffi
5:0

p
and o ¼ 0:6 is shown in

Fig. 5(a). The sampled data onto the Poincar!e section were at the excitation phase p=2: The
diagram consists of three regular motion intervals fA½6:6; 7:143
; ½7:244; 7:42
 and ½7:57; 7:8
; and
two chaotic motion intervals ½7:143; 7:244
 and ½7:42; 7:57
: There exists a window of regular
motions between the two chaotic motion intervals. The chaotic motions in the range
fA½7:143; 7:244
 result from typical period-doubling bifurcations, while the chaotic motions in
½7:42; 7:57
 appear abruptly after a periodic motion loses its stability. The route to chaotic motions
from period-doubling bifurcations is clearly illustrated in Fig. 5(b), an enlargement of the range
fA½7:06; 7:18
 from Fig. 5(a). Typical supercritical pitchfork bifurcations leading to a doubling
period of the system motion appears at f ¼ 7:078 and 7.132. A periodic solution is observed for
fA½7:06; 7:078
; a two-periodic solution for ½7:078; 7:132
; and a four-periodic solution for
½7:132; 7:138
: The chaotic motions seem to disappear after a reverse period-doubling bifurcation,
stating from a chaotic motion to a two-periodic motion, and to a periodic motion. This may be
seen in the parameter region fA½7:2; 7:4
 from Fig. 5(a), which is enlarged in Fig. 5(c). A
subcritical pitchfork bifurcation occurs at f ¼ 7:353; where a period-two motion loses its stability
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Fig. 4. The subharmonic motion of order 21: (a) phase portrait; (b) Poincar!e section.
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and a period-one motion appears. Fig. 5(d) shows the Poincar!e map of a regular chaotic attractor
at f ¼ 7:2 onto the phase of excitation p=4:
Another interesting dynamical behaviour, which widely exists in the system response, is a

coexistence of different motions starting from different sets of initial conditions. Due to the
extremely laborious calculations, a determination of the domain of attraction of various solutions
is not considered in this paper. Only some examples are given instead. It has been found
numerically that two, three, or even four stable solutions may coexist at some combinations of the
system parameters. These multiple steady-state stable solutions starting from different sets of
initial conditions were observed after the transient responses became negligible. In particular, it
has been found that a double-crossing saturation region period-one motion became unstable and
two double-crossing saturation region asymmetric stable solutions appeared. Each of two
asymmetric solutions is the other’s symmetric image about the origin, which is a property of the
asymmetric solutions coexisting in this system. These asymmetric solutions result from a flip
bifurcation of the symmetric solution, where it becomes unstable. In some combinations of the
system parameters, a double-crossing saturation region symmetric stable motion may coexist with
a subharmonic solution of order three or seven, as shown in Fig. 6. The motions shown in
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Fig. 5. The bifurcation diagrams of the system response under d ¼ 0:025; o2 ¼
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p
; o ¼ 0:6; and the Poincar!e map of

a chaotic motion at f ¼ 7:2:
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Fig. 6(a) were obtained using initial conditions ð0:1; 0:1Þ for the period-one motion and ð0:0; 1:0Þ

for the subharmonic motion at the combination of the system parameters d ¼ 0:01; o2 ¼
ffiffiffiffiffiffi
3:6

p
;

f ¼ 4:0 and o ¼ 0:98: And the motions shown in Fig. 6(b) were obtained using initial conditions

ð�0:1;�0:2Þ and ð1:0; 1:6Þ under d ¼ 0:01; o2 ¼
ffiffiffiffiffiffi
3:2

p
; f ¼ 4:1 and o ¼ 0:96:

There also exist some combinations of the system parameters where three stable solutions
coexist. For example, a double-crossing saturation region period-one solution may coexist with a
pair of double-crossing saturation region asymmetric solutions, as shown in Fig. 7. These three
solutions were obtained under the initial conditions ð1:8; 0:0Þ; ð0:0; 1:0Þ; and ð0:1;�0:2Þ;
respectively, for d ¼ 0:05; o2 ¼

ffiffiffi
5

p
; f ¼ 5:3 and o ¼ 1:0: The asymmetric solutions also observe

the property of the image symmetry. In addition, a pair of subharmonic motions of order three
may coexist with a double-crossing saturation region symmetric motion, as shown in Fig. 8, at
d ¼ 0:025; o2 ¼

ffiffiffiffiffiffiffiffiffi
4:98

p
; f ¼ 5:8 and o ¼ 1:0: The initial conditions for these solutions are
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Fig. 6. The coexistence of a period-one motion (indicated by dashed curves) and a subharmonic motion of order
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Fig. 7. The coexistence of a symmetric and two asymmetric double-crossing saturation region per cycle period-one

solutions: (a) the symmetric solution; (b) two asymmetric solutions.
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ð0:1;�0:3Þ; ð0:0; 1:0Þ and ð�0:2;�0:1Þ respectively. Each of the subharmonic motions is the other’s
symmetric image about the origin.
At certain combinations of the system parameters, a coexistence of four stable solutions was

also found. For example, under d ¼ 0:05; o2 ¼
ffiffiffi
5

p
; f ¼ 5:4 and o ¼ 1:0; a pair of asymmetric

double-crossing saturation region solutions may coexist with a pair of single-crossing saturation
region per cycle period-one solutions, as shown in Fig. 9. The initial conditions for the single-
crossing saturation region solutions are ð1:8; 0:0Þ and ð0:0;�1:0Þ; whereas those for the double-
crossing solutions are ð0:0; 1:0Þ and ð�0:1; 0:1Þ respectively. Each of the asymmetric solutions is its
companion’s symmetric image about the origin.
A multiple-crossing saturation region per cycle period-one motion may also exist in the system

response in the region oo1: For example, there exists only a quadruple-crossing saturation region
per cycle period-one solution starting from any set of initial conditions, at d ¼ 0:05; o2 ¼

ffiffiffi
2

p
;

f ¼ 3:2 and o ¼ 0:5:
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Fig. 8. The coexistence of a pair of subharmonic motions of order three and a symmetric period-one motion: (a) two

subharmonic motions; (b) the period-one motion.
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Fig. 9. The coexistence of a pair of double-crossing and a pair of single-crossing saturation region per cycle asymmetric

period-one solutions: (a) two double-crossing solutions; (b) two single-crossing solutions.
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6. Conclusions

In this paper, the dynamics of a periodically forced s.d.o.f. piecewise linear system has been
investigated. The equations of motion, generalized from a practical engineering example, can also
be used to model mathematically a class of linear controlled systems subjected to a saturation
constraint and a periodic perturbation. A detailed analysis has been developed to obtain a double-
crossing saturation region symmetric period-one solution. The stability of such a solution was
determined by examining the asymptotic behaviour of the corresponding perturbed solutions. The
system may also demonstrate other kinds of motions, namely asymmetric, subharmonic and
chaotic motions. In addition, a coexistence of multiple stable solutions has been found using
different sets of initial conditions.
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